Abstract

This paper proposes a novel optimal receiver for an $N$ -branch receive diversity power line communication (PLC) system subject to Rayleigh fading and perturbed by Nakagami-m background noise. A Gauss-optimal receiver is obtained from the optimal receiver which is further utilized to derive a closed form expression for the symbol error probability (SEP) for binary phase-shift keying (BPSK) modulation using a characteristic function approach under the condition that mN is an integer. An asymptotic expression for the SEP at high signal-to-noise ratio (SNR) shows the diversity order of the PLC system to be independent of the noise shape parameter $m$ . Numerical studies demonstrate that the diversity order of the optimal receiver is preserved with the suboptimal receiver as well. Furthermore, the advantage of using multiple receive branches in terms of achieving better error performance and the effect of the shape parameter $m$ on the SEP of the suboptimal receiver are also presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.