Abstract
In this study, two scenarios are considered to evaluate the performance of a protonic ceramic electrochemical hydrogen compressor (EHC) and reformer integrated with a proton exchange membrane fuel cell (PEMFC). First scenario includes integration of an EHC with PEMFC and in the second scenario, steam methane reforming (SMR) is replaced by an EHC. Results show that the highest energy and exergy efficiencies of the system in the first scenario is achieved when the area-specific resistance (ASR) in EHC is 1.5 Ωcm2. An increase in the working temperature of EHC causes a considerable rise in the exergy destruction and an increase of energy efficiency by 7% in the first scenario, while the temperature of the reformer affects the exergy destruction, negligibly. The parametric study indicates that the best value of the current density of PEMFC is 0.8481 A/cm2 and 0.8324 A/cm2 and the best current density of PEM-EHC value is 0.4468 A/cm2 and 0.11 A/cm2 in the 1st and 2nd scenarios, respectively. Under the same conditions, energy and exergy efficiencies for the first scenario are 61.63% and 54.9% and for the second scenario are 42.48% and 14.61%, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.