Abstract

Future wireless communications have been envisaged to benefit from integrating drones and free space optical (FSO) communications, which would provide links with line-of-sight propagation and large communication capacity. The theoretical performance analysis for a drone-assisted downlink FSO system is investigated. Furthermore, this paper utilizes the Málaga distribution to characterize the effect of atmospheric turbulence on the optical signal for the drone–terrestrial user link, taking into account atmospheric attenuation, pointing errors, and angle-of-arrival fluctuations. The probability density function and cumulative distribution function are then expressed in closed-form using the heterodyne detection and indirect modulation/direct detection techniques, respectively. Thereafter, the analytical expressions including the average bit error rate (BER) and the ergodic capacity are given. Particularly, the asymptotic behavior of the average BER of the considered system is presented using heterodyne detection at high optical power. The Monte Carlo simulation results certify the theoretical analytical results. Correspondingly, the field-of-view of the receiver is analyzed for optimal communication performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call