Abstract

Burst detection is an initial step for burst-mode demodulation. The theoretical performance of a differential-correlation based burst detection (DCBD) method is analyzed. The expressions of miss detection probability and false alarm probability (FAP) of this method are derived. The FAP arisen from message signals are also considered and proved to be close to the FAP arisen from noise signals, which is not covered in other similar works. Based on the theoretical analysis, the properties of the detection method are concluded. Both the analytical analysis and the simulation results show that DCBD is robust to frequency offset and is a CFAR method. Furthermore, the detection threshold is independent of the signal amplitude. These properties indicate that DCBD is very proper and practical for burst detection. The analytical results also give references how the threshold should be set to meet the system performance requirements for various signal conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call