Abstract

This paper presents a theoretical study of a combined thermal system, which combines the Rankine cycle and the ejector refrigeration cycle. This combined cycle produces power and refrigeration simultaneously. The thermal system could use low temperature heat sources. A simulation was carried out to evaluate the cycle performance using several working fluids as R123, R141b, R245fa, R601a and R600a. A one-dimensional mathematical model of the ejector was developed using the equations governing the flow and thermodynamics based on the constant area ejector flow model. The ejector is studied in optimal operating regime. The influence of thermodynamic parameters on system performance is studied. The results show that the condenser temperature, the evaporation temperature, the extraction ratio, the fluid nature and the generating temperature have significant effects on the system performances (the coefficient of performance of the combined cycle and the entrainment ratio of the ejector).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.