Abstract

A thermodynamic analysis for a combined cooling, heating and power (CCHP) system based on proton exchange membrane (PEM) fuel cell asa prime mover is done in this paper. The CCHP system consists of a PEM fuel cell, an absorption chiller, a pump, a compressor, and a heat storage tank. This system is investigated from viewpoints of energy, exergy and fuel energy saving ratio (FESR). The results illustrate that, the energy and exergy efficiencies of the CCHP system are 81.55% and 54.5%, respectively. Also, the CCHP system has been compared with conventional energy supply systems and the FESR has been calculated 45%. The exergy destructions of system components have been analyzed and showed that its maximum occurs in PEM fuel cell. Additionally, the effect of fuel cell size on energy and exergy efficiencies is studied, and the results show that by increasing the size of fuel cell, the energy efficiency and COP of the chiller increase but the exergy efficiency decreases. Furthermore, y Factor as an innovative parameter has introduced and shows that when all heat generation by fuel cell is used for cooling demands, the energy efficiency is low, but at lower values of y Factor, energy efficiency increases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call