Abstract

Abstract Cascade adsorption refrigeration technology using high-temperature driving heat is a very promising option for low-temperature cooling applications due to the large temperature difference between the heat source and the cold distributed. The present work carried out a feasibility and parametric study in order to analyze the functioning of a cascading adsorption cycle using the working pair zeolite/ammonia in beds operating at high temperatures and activated carbon/ammonia in those operating at low temperatures. At the nominal thermal conditions, namely, heating, condensing, and evaporating temperatures of 280 °C, 35 °C, and (−5) °C, respectively, the coefficient of performance (COP) and the specific refrigerating capacity (SCP) of the cycle were 0.53 and 67.1 W/kg. When the driving temperature is varied from 260 °C to 320 °C, the COP increases by 57% and the SCP by 36%. The performance of the cascading adsorption cycle at negative evaporating temperatures is very satisfactory.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.