Abstract

Abstract Free space optical communication (FSO) is a technique based on transmission of data by propagating the light in free space. FSO is inexpensive, providing high data rates, high capacity, high security, and low power and uses the license free frequency spectrum. Nevertheless, FSO is still facing many problems such as bad weather conditions, atmospheric turbulence, and multipath fading. In this research work, orthogonal frequency division multiplexing (OFDM) FSO system is analyzed for low to heavy rain fall intensities. Different rain rates have been considered for low, moderate, heavy, very heavy, and torrential rains. For all the rain rates, a direct detection OFDM–FSO system and a coherent detection system have been simulated and results are compared. Analysis has been done on the basis of SNR, received power, and constellation diagrams. According to these parameters, link length of both the systems for different rain rates was found. Coherent detection is applied to improve the system sensitivity compared to conventional direct detection. In tropical regions where heavy rainfall is the main reason for the degradation of the system, the OFDM system with coherent detection can perform better with high data rates. Second, over a 11 km FSO, a 4-QAM wireless signal is successfully transmitted under very heavy rainfall conditions. The distance achieved by moderate and heavy rains is 25 km and 15.5 km with an acceptable SNR of 25 dB and a system sensitivity (received power) of −65.1 dBm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.