Abstract

BACKGROUND. Although primary lung cancer is rare in children, chest CT is commonly performed to assess for lung metastases in children with cancer. Lung nodule computer-aided detection (CAD) systems have been designed and studied primarily using adult training data, and the efficacy of such systems when applied to pediatric patients is poorly understood. OBJECTIVE. The purpose of this study was to evaluate in children the diagnostic performance of traditional and deep learning CAD systems trained with adult data for the detection of lung nodules on chest CT scans and to compare the ability of such systems to generalize to children versus to other adults. METHODS. This retrospective study included pediatric and adult chest CT test sets. The pediatric test set comprised 59 CT scans in 59 patients (30 boys, 29 girls; mean age, 13.1 years; age range, 4-17 years), which were obtained from November 30, 2018, to August 31, 2020; lung nodules were annotated by fellowship-trained pediatric radiologists as the reference standard. The adult test set was the publicly available adult Lung Nodule Analysis (LUNA) 2016 subset 0, which contained 89 deidentified scans with previously annotated nodules. The test sets were processed through the traditional FlyerScan (github.com/rhardie1/FlyerScanCT) and deep learning Medical Open Network for Artificial Intelligence (MONAI; github.com/Project-MONAI/model-zoo/releases) lung nodule CAD systems, which had been trained on separate sets of CT scans in adults. Sensitivity and false-positive (FP) frequency were calculated for nodules measuring 3-30 mm; nonoverlapping 95% CIs indicated significant differences. RESULTS. Operating at two FPs per scan, on pediatric testing data FlyerScan and MONAI showed significantly lower detection sensitivities of 68.4% (197/288; 95% CI, 65.1-73.0%) and 53.1% (153/288; 95% CI, 46.7-58.4%), respectively, than on adult LUNA 2016 subset 0 testing data (83.9% [94/112; 95% CI, 79.1-88.0%] and 95.5% [107/112; 95% CI, 90.0-98.4%], respectively). Mean nodule size was smaller (p < .001) in the pediatric testing data (5.4 ± 3.1 [SD] mm) than in the adult LUNA 2016 subset 0 testing data (11.0 ± 6.2 mm). CONCLUSION. Adult-trained traditional and deep learning-based lung nodule CAD systems had significantly lower sensitivity for detection on pediatric data than on adult data at a matching FP frequency. The performance difference may relate to the smaller size of pediatric lung nodules. CLINICAL IMPACT. The results indicate a need for pediatric-specific lung nodule CAD systems trained on data specific to pediatric patients.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.