Abstract

The performance analysis of optimal decode-and-forward (DF) relay selection for the full-duplex (FD) mode in underlay cognitive radio (CR) networks is studied, with the impact of critical parameters such as the residual self-interference, the distributions of the received signal-to-noise ratio (SNR), and the outage probability, being analyzed. Different from the conventional relay selection schemes with half-duplex (HD) mode, the FD relay suffers from the impact of residual self-interference due to its simultaneous transmission and reception using the same channel. Furthermore, the exact closed-form expressions for the outage probabilities of the proposed FD relay-selection scheme over both independent Nakagami- m and Rayleigh fading channels are derived, with the validity of the proposed analysis being proven by using simulation. Numerical results show that, in the presence of multiple candidate relays, an optimum relay-selection solution in terms of outage probability can always be achievable within the SNR range of (10 dB, 15 dB).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.