Abstract
In this paper, the downlink performance of multi-cell distributed antenna systems (DAS) with a single user in each cell is investigated. Assuming the channel state information is available at the transmitter, four transmission modes are formulated as combinations of remote antenna units (RAUs) selection and cooperative transmission, namely, non-cooperative transmission without RAU selection (NCT), cooperative transmission without RAU selection (CT), non-cooperative transmission with RAU selection (NCT_RAUS), and cooperative transmission with RAU selection (CT_RAUS). By using probability theory, the cumulative distribution function (CDF) of a user’s signal to interference plus noise ratio (SINR) and the system ergodic capacity under the above four modes are determined, and their closed-form expressions are obtained. Furthermore, the system energy efficiency (EE) is studied by introducing a realistic power consumption model of DAS. An expression for determining EE is formulated, and the closed-form tradeoff relationship between spectral efficiency (SE) and EE is derived as well. Simulation results demonstrate their consistency with the theoretical analysis and reveal the factors constraining system EE, which provide a scientific basis for future design and optimization of DAS.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: KSII Transactions on Internet and Information Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.