Abstract

AbstractCyclic code‐shift keying (CCSK) is the baseband 32‐ary symbol modulation scheme used by the Joint Tactical Information Distribution System (JTIDS), the communication terminal for Link‐16. CCSK is not orthogonal and an analytic expression for the probability of symbol error for CCSK has thus far been elusive. In this paper, an analytic upper bound on the probability of symbol error of CCSK is derived for the 32‐chip CCSK starting sequence chosen for JTIDS. The analytically obtained probability of symbol error is compared with two different Monte Carlo simulations for additive white Gaussian noise. The results of both simulations match the analytic results very well and show that the analytic method yields a tight upper bound. A new 32‐chip CCSK starting sequence which has a smaller maximum off‐peak cross‐correlation value than the current JTIDS starting sequence is proposed and evaluated both analytically and by simulation. The results obtained for the new CCSK starting sequence compare favorably with the CCSK starting sequence chosen for JTIDS. Published in 2010 by John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.