Abstract

Towards the 5Gnetworks and beyond, there are a lot of emerging technologies. These technologies include but not limited to; multiple input multiple output (MIMO), cell-Free networks, and millimeter wave bands. The cellular MIMO can provide a satisfied performance for users except the shadowed and the cell-edge ones. In order to overcome this disadvantage, the cell-Free networks are deployed. Through applications of distributed access points (APs), the cell-Free networks can provide a ubiquitous coverage for users as whole. Therefore, they can provide a high throughput for users. Moreover, the applications of millimeter wave bands can provide a high bandwidth and hence, a high throughput for users. In other words, the application of the cell-Free technology combined with the millimeter wave bands can extremely enlarge the users’ throughput. This is the motivation of our manuscript. The purpose of this manuscript is to provide mathematical model and simulation for the cell-Free mMIMO network, operating in the millimeter wave bands. The performance metrics can include; the spectral efficiency (SE), bit error rate (BER), and energy efficiency (EE). It is observed that the centralized cooperation among the APs can let users have a satisfied throughput even the system employs the maximal ratio combining (MRC). Furthermore, all cooperation levels, among APs, can perform well even for non-light of sight (NLOS) environment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call