Abstract

The influence of both the quantum degeneracy and the finite rate heat transfer between the working substance and the cylinder wall on the optimal performance of an Otto engine cycle is investigated. Expressions for several important parameters such as the power output and efficiency are derived. By using numerical solutions, the curves of the power output and efficiency varying with the compression ratio of two isochoric processes are presented. It is found that there are optimal values of the compression ratio at which the power output and efficiency attain their maximum. In particular, the optimal performance of the cycle in strong and weak gas degeneracy and the high temperature limit are discussed in detail. The distinctions and connections between the quantum Otto engine and the classical are revealed. Moreover, the maximum power output and efficiency and the corresponding relevant parameters are calculated, and consequently, the optimization criteria of some important parameters such as the power output, efficiency and compression ratio of the working substance are obtained.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call