Abstract

In this paper, we analyze the performance of a particular class of transmitted-reference receivers for impulse radio ultrawideband communication systems, which is called chip-time differential transmitted-reference ( <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$\hbox{T}_{\rm c}$</tex></formula> -DTR). The analysis aims at investigating the robustness of this receiver to single-tone and multitone narrowband interference (NBI) and comparing its performance with other noncoherent receivers that are proposed in the literature. It is shown that the <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$\hbox{T}_{\rm c}$</tex></formula> -DTR scheme provides more degrees of freedom for performance optimization and that it is inherently more robust to NBI than other noncoherent receivers. More specifically, it is analytically proved that the performance improvement is due to the chip-time-level differential encoding/decoding of the direct sequence (DS) code and to an adequate design of DS code and average pulse repetition time. The analysis encompasses performance metrics that are useful for both data detection (i.e., average bit error probability) and timing acquisition (i.e., false-alarm probability <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$\hbox{P}_{\rm fa}$</tex></formula> and detection probability <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$\hbox{P}_{\rm d}$</tex></formula> ). Moving from the proposed semianalytical framework, the optimal code design and system parameters are derived, and it is highlighted that the same optimization criteria can be applied to all the performance metrics considered in this paper. In addition, analytical frameworks and theoretical findings are substantiated through Monte Carlo simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.