Abstract

The hole transport layer (HTL) in organic solar cells (OSCs) plays an imperative role in boosting the cell’s performance. PEDOT:PSS is a conventional HTL used in OSCs owing to its high design cost and instability issues. It can be replaced with graphene oxide to increase the cell performance by overcoming instability issues. Graphene oxide (GO) has gained popularity in recent years for its practical use in solar energy due to its remarkable mechanical, electrical, thermal, and optical properties. This work uses SCAPS-1D to examine the results of graphene oxide (GO)-based organic solar cells by giving a comparison between the performance of absorber layers and a GO-based HTL to see which absorber material interacts more strongly with GO. The absorber layer PBDB-T:ITIC paired with GO as HTL outperforms the other absorber layers due to its better optical and electrical characteristics. Numerical simulations are performed within the SCAPS software at various absorber layer thicknesses, defect densities, and doping values to assess the influence on device performance and efficiency. After cell optimization, the best efficiency of an improved OSC is found to be 17.36%, and the outcomes of the simulated OSC are referenced to the results of the experimentally implemented OSC. These results provide a possible future direction for developing GO-based OSCs with higher efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.