Abstract

Photonic millimeter wave (mm-wave) signal generation employing a differential Mach-Zehnder modulator (DMZM) and a semiconductor optical amplifier (SOA) is proposed and evaluated by theoretical analysis and simulation. This paper presents the theoretical study of the generation of a co-polarized and phase-locked dual-pump for four-wave mixing and optical mm-wave signal, the propagation of the optical mm-wave signal in single mode fiber, and the coherent demodulation of the electrical mm-wave signal at the base station. Performance analysis and optimization design of the proposed scheme are conducted via simulations. The generation of mm-wave signals at 30, 40, and 60 GHz is simulated and analyzed. The influence of SOA and the input optical signal on the mm-wave generation and transmission is investigated. Simulation results present useful insight for the practicality of photonic mm-wave signal generation and distribution in the next-generation access network.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call