Abstract
Abstract Since previous studies of parallel mechanisms (PMs) have tended to favor symmetrical overall configuration to obtain relatively stable kinematic and dynamic performance and to satisfy isotropic requirements. The analysis of kinematic and dynamic performance of asymmetric mechanisms has been an issue of interest. In this paper, an asymmetric SCARA-type PM with four-degrees-of-freedom (DOF) is proposed. First, the orientation characteristic set is calculated to obtain the DOF of the PM. Then, the inverse kinematics and the velocity and acceleration of each branch chain of the mechanism are analyzed. The dynamic model of the mechanism is established according to the principle of virtual work. The workspace of the mechanism is drawn according to the constraints that have been given to the mechanism's kinematic pairs. The singularity, dexterity, motion/force transfer performance, and maximum acceleration performance of the mechanism are also analyzed. On this basis, the kinematic and dynamic performance evaluation indexes of the mechanism are studied. Finally, the workspace and acceleration performance of the mechanism are optimized based on the differential evolution (DE) algorithm to obtain the structural parameters when the mechanism achieves optimal performance. The asymmetric PM proposed in this paper, as well as the algorithm of performance index and optimization method used, can provide some reference value for configuration design and optimization analysis.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.