Abstract

This study presents a novel cooling-power-desalination combined cycle for recovering shipboard diesel exhaust heat, integrating a freezing desalination sub-cycle to regulate the ship’s cooling-load fluctuations. The combined cycle employs ammonia–water as the working fluid and efficiently utilizes excess cooling capacity to pretreat reverse osmosis desalination. By adjusting the mass flow rate of the working fluid in both the air conditioning refrigeration cycle and the freezing desalination sub-cycle, the combined cycle can dynamically meet the cooling-load demand under different working conditions and navigation areas. To analyze the cycle’s performance, a mathematical model is established for energy and exergy analysis, and key parameters including net output work, comprehensive efficiency, and heat exchanger area are optimized using the MOPSO algorithm. The results indicate that the system achieves optimal performance when the generator temperature reaches 249.95 °C, the sea water temperature is 22.29 °C, and 42% ammonia–water is used as the working fluid. Additionally, an economic analysis of frozen seawater desalination as RO seawater desalination pretreatment reveals a substantial cost reduction of 22.69%, showcasing the advantageous features of this proposed cycle. The research in this paper is helpful for waste energy recovery and sustainable development.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.