Abstract
Automotive torque converters have recently been designed with an increasingly narrower profile for the purpose of achieving a smaller axial size and reducing weight. Design of experiment (DOE) and computational fluid dynamics (CFD) techniques are applied to improve the performance of a flat torque converter. Four torque converters with different flatness ratios (0.204, 0.186, 0.172, and 0.158) are designed and simulated first to investigate the effects of flatness ratio on their overall performance, including efficiency, torque ratio, and impeller torque factor. The simulation results show that the overall performance tends to deteriorate as the flatness ratio decreases. Then a parametric study covering six geometric parameters, namely, inlet and outlet angles of impeller, turbine, and stator is carried out. The results demonstrate that the inlet and outlet angles play an important role in determining the performance characteristics of a torque converter. Furthermore, the relative importance of the six design parameters is investigated using DOE method for each response (stall torque ratio and peak efficiency). The turbine outlet angle is found to exert the greatest influence on both responses. After DOE analysis, an optimized design for the flat torque converter geometry is obtained. Compared to the conventional product, the width of the optimized flat torque converter torus is reduced by about 20% while the values of stall torque ratio and peak efficiency are only decreased by 0.4% and 1.7%, respectively. The proposed new optimization strategy based on DOE method together with desirability function approach can be used for performance enhancement in the design process of flat torque converters.
Highlights
Torque converters are an important part of automatic transmissions in automobiles and other vehicles
3.2 Results and Discussion Four torque converters with different flatness ratio were calculated using a computational fluid dynamics (CFD) code in order to evaluate the change in their overall performance, including efficiency η, torque ratio Tr and impeller torque factor I
A Design of experiment (DOE) method sets out configurations to be conducted using an appropriate orthogonal array; the terminology used in these arrays includes “factors”—an item that is to be varied during the simulations, “level”—the number of times a factor is to be varied during the simulations and “configuration number”—the number of simulations that are required to be run to complete the analysis [26]
Summary
Torque converters are an important part of automatic transmissions in automobiles and other vehicles. It provides automatic torque amplification according to the different rotational speed between the input and output speeds without any active control, inherently suppressing engine torque fluctuations. Because it significantly affects the fuel economy, launch feeling and drivability, interests in the development of a high efficiency and performance have been increased recently. (2018) 31:60 the geometry of an automotive torque converter and the resultant efficiency in relation to the internal flow characteristics. Shin et al [8, 9] investigated the effect of reactor blade geometry with varying thickness ratios, scroll angles and slot angles on the performance of a torque converter. The system was used to investigate the effect of design parameters on the performance
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.