Abstract

In order to facilitate the widespread application of ultrasonic motors, it is essential to conduct a quantitative study aimed at enhancing their performance. The present paper provides a comprehensive theoretical analysis of an ultrasonic motor equipped with dual vibrators, enabling operation in both the single-driven and dual-driven modes, thereby enhancing versatility in terms of performance adjustment. This study provides a detailed examination of the motor's unique performance characteristics and its varying output responses to different driving signals. Experimental investigations are conducted in both the single-driven and dual-driven modes to validate theoretical predictions. The results demonstrate that the motor exhibits a maximum speed, torque, and power that are 1.59, 1.28, and 1.62 times higher than those of the single-driven stator, respectively. A conclusion can be drawn that the motor will attain the desired performance when operated in the appropriate driven mode.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.