Abstract

We propose a model of dynamically evolving random networks and give an analytical result of the cover time of the simple random walk algorithm on a dynamic random symmetric planar point graph. Our dynamic network model considers random node distribution and random node mobility. We analyze the cover time of the parallel random walk algorithm on a complete network and show by numerical data that k parallel random walks reduce the cover time by almost a factor of k. We present simulation results for four random walk algorithms on random asymmetric planar point graphs. These algorithms include the simple random walk algorithm, the intelligent random walk algorithm, the parallel random walk algorithm, and the parallel intelligent random walk algorithm. Our random network model considers random node distribution and random battery transmission power.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call