Abstract

A solar-assisted heat pump system with a conventional backup unit was simulated for a 93 m 2 (1000 ft 2) house in Rhode Island using quasi-dynamic computer models. The performance of the system as a function of collector area and thermal storage volume was evaluated to determine the fraction of the space heating and domestic hot water load that was supplied by the solar-assisted system. This information was used to compute the payback time, based on cumulative costs, for each variation of the system's parameters when compared to a conventional system. The optimal combination of system components which had a payback time less than the mortgage life was determined. For the given initial costs of solar panels and storage reservoir, this optimal combination was found to be insensitive to the variations in mortgage and fuel cost growth rates presented in this report.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.