Abstract

Bluetooth Low Energy (BLE) is a recently developed energy-efficient short-range wireless communication protocol. In this paper, we discuss and compare the maximum peer-to-peer throughput, the minimum frame turnaround time, and the energy consumption for three protocols, namely BLE, IEEE 802.15.4 and SimpliciTI. The specifics and the main contributions are the results both of the theoretical analysis and of the empirical measurements, which were executed using the commercially available hardware transceivers and software stacks. The presented results reveal the protocols’ capabilities and enable one to estimate the feasibility of using these technologies for particular applications. Based on the presented results, we draw conclusions regarding the feasibility and the most suitable application scenarios of the BLE technology.

Highlights

  • During recent years, energy-efficient short-range wireless communication technologies have become a hot topic for research and development

  • In [6] we showed that the maximum throughput for the m acceess control (MAC) payload in the nonbeacon-enabled IEEE 802.15.4 2450 DSSS PAN for acknowledged and unacknowledged single-hop data transfer can be calculated by Equations (3) and (4), respectively

  • In order to compare the analytic estimations of the maximum throughput and the minimum frame turnaround time obtained in Section 3 with the performance characteristics of the real-life transmitters, we have executed a set of experiments

Read more

Summary

Introduction

Energy-efficient short-range wireless communication technologies have become a hot topic for research and development. The efforts of researchers and engineers have increased the energy efficiency of and reduced the monetary costs for wireless data transmission. For many applications today, wireless data transfer appears to be more efficient than data transfer using wired media [1,2]. Numerous transceivers implementing the different wireless communication protocols are available on the market. One of the recently suggested protocols is Bluetooth Low-Energy (BLE), which is aimed at applications and products requiring low current consumption and low implementation complexity and having low production costs [3]. During the development of BLE and shortly after its introduction, it was predicted that the protocol would have a very wide application area

Methods
Findings
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.