Abstract

Naval ships are assigned many and varied missions. Their performance is critical for mission success, and depends on the specifications of the components. This is why performance analyses of naval ships are required at the initial design stage. Since the design and construction of naval ships take a very long time and incurs a huge cost, Modeling and Simulation (M & S) is an effective method for performance analyses. Thus in this study, a simulation core is proposed to analyze the performance of naval ships considering their specifications. This simulation core can perform the engineering level of simulations, considering the mathematical models for naval ships, such as maneuvering equations and passive sonar equations. Also, the simulation models of the simulation core follow Discrete EVent system Specification (DEVS) and Discrete Time System Specification (DTSS) formalisms, so that simulations can progress over discrete events and discrete times. In addition, applying DEVS and DTSS formalisms makes the structure of simulation models flexible and reusable. To verify the applicability of this simulation core, such a simulation core was applied to simulations for the performance analyses of a submarine in an Anti-SUrface Warfare (ASUW) mission. These simulations were composed of two scenarios. The first scenario of submarine diving carried out maneuvering performance analysis by analyzing the pitch angle variation and depth variation of the submarine over time. The second scenario of submarine detection carried out detection performance analysis by analyzing how well the sonar of the submarine resolves adjacent targets. The results of these simulations ensure that the simulation core of this study could be applied to the performance analyses of naval ships considering their specifications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call