Abstract

Solar desalination is one of the mostsustainable solutions to produce freshwater from brackish water. The present research work aims to experimentally investigate the effect of a V-shape concentrator integrated with solar still (SS). The V-shape concentrator integrated with the conventional solar still (CSS) is used to supply the saline water at elevated temperature to the basin of SS, which augments the freshwater yield compared to CSS. The experimental investigation was performed at different brackish water depths of 0.01, 0.02, and 0.03 m, respectively. The SS system was evaluated based on water yield, energy, exergy, concentrator efficiency, and economicanalysis. The freshwater yield of the solar still integratedwith V-shape concentrator (SSVC) was found to be 5.47, 5.10, and 4.89 L/m2.day, whereas the yield of the CSS was 3.73, 3.27, and 2.91 L/m2 .day at thewater depths of 0.01, 0.02, and 0.03 m, respectively. The daily energy and exergy efficiency of CSS were 38.5, 33.5, and 29.4% and 1.9, 1.5, and 0.97 % in the case of 0.01, 0.02, and 0.03m water depth , respectively. However, the integration of concentrator significantly augmented the energy efficiency to 57.4, 51.7, and 44.9% and exergy efficiency to 3.8, 3.3, and 2.8% for the respective water depths . Life cycle studies demonstrated that the freshwatercost per liter for CSS and SSVC were 0.0102 $ and 0.0117 $ respectively, at a water depth of 0.01 m. It was concluded that the addition of V-shape concentrator and minimum water depth is useful to augment the energy efficiency, exergy efficiency, and yield of the SS in the very economical way.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.