Abstract

Modern computing systems typically use a large number of independent, non-identical computing nodes to perform a set of coordinated computations in parallel. The computing system and its constituent computing nodes often exhibit more than two performance levels or states corresponding to different computing powers. This paper models and evaluates performability of large-scale multi-state computing systems, which is the probability that a computing system performs at a particular performance level. The heterogeneity in the constituent components of different nodes (due to factors such as different model generations, model suppliers, and operating environments) makes performability analysis difficult and challenging. In this paper a specification method for system performance level (SPL) is first introduced. A multi-valued decision diagram (MDD) based approach is then proposed for performability analysis of multi-state computing systems consisting of nodes with different state occupation probabilities, which encompasses novel and efficient MDD model generation procedures. Example and benchmark studies are performed to show that the proposed approach can offer efficient performability analysis of large-scale computing systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call