Abstract
Obesity-related insulin resistance is associated with an influx of pathogenic T cells into visceral adipose tissue (VAT), but the mechanisms regulating lymphocyte balance in such tissues are unknown. Here we describe an important role for the immune cytotoxic effector molecule perforin in regulating this process. Perforin-deficient mice (Prf1(null)) show early increased body weight and adiposity, glucose intolerance, and insulin resistance when placed on high-fat diet (HFD). Regulatory effects of perforin on glucose tolerance are mechanistically linked to the control of T-cell proliferation and cytokine production in inflamed VAT. HFD-fed Prf1(null) mice have increased accumulation of proinflammatory IFN-γ-producing CD4(+) and CD8(+) T cells and M1-polarized macrophages in VAT. CD8(+) T cells from the VAT of Prf1(null) mice have increased proliferation and impaired early apoptosis, suggesting a role for perforin in the regulation of T-cell turnover during HFD feeding. Transfer of CD8(+) T cells from Prf1(null) mice into CD8-deficient mice (CD8(null)) resulted in worsening of metabolic parameters compared with wild-type donors. Improved metabolic parameters in HFD natural killer (NK) cell-deficient mice (NK(null)) ruled out a role for NK cells as a single source of perforin in regulating glucose homeostasis. The findings support the importance of T-cell function in insulin resistance and suggest that modulation of lymphocyte homeostasis in inflamed VAT is one possible avenue for therapeutic intervention.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.