Abstract

MXene (Ti3C2Tx) is a novel, two-dimensional (2D) layered material that is atomically thin, exhibits good mechanical strength, and is ideal for fabricating efficient membranes for molecular separation. However, the applications of MXene membranes are limited by their low water permeability owing to narrow channels and high tortuosity. A novel strategy for introducing artificial pores on the surface of MXene nanosheets via gentle in situ chemical etching with hydrogen peroxide (H2O2) to prepare porous MXene nanosheets (PMS) is reported herein. This greatly increases the water permeability of MXene membranes while retaining the high rejection of small-molecule dyes. Permeable pores generated on MXene nanosheets transform the transport model of water molecules in the membrane from typical horizontal transport pathways dominated by interlayer channels to longitudinal–lateral three-dimensional transport pathways, affording increased water molecule transport channels and reduced transport distance. Based on different etching conditions, the obtained membranes exhibit high pure-water permeability ranging from 9.37 to 42.48 L m−2 h−1 bar−1. Moreover, mild etching maintains the 2D structure of the membrane and retains a nearly complete rejection of congo red dye. This study provides a novel and effective strategy for preparing high-performance porous laminar MXene membranes for dye-separation applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.