Abstract
Ballistic tests were performed on two types of polyethylene core sandwich structures (AA6082/LDPE/AA6082 and AA6082/UHMWPE/AA6082) to investigate their perforation resistance. Bulging and dishing deformation of layered plates were compared under low-velocity impact by hemispherical-nosed projectiles. Different impact failure mechanisms leading to perforation were revealed for laminates composed of a pair of aluminum alloy face sheets separated by a polyethylene interlayer. Using the finite element code Abaqus/Explicit, the perforation behavior and distribution of energy dissipation of each layer during penetration were simulated and analysed. The deformation resistance and anti-penetration properties of polyethylene core sandwich structures were compared with those of monolithic AA6082-T6 plates that had the same areal density. Although the polyethylene interlayer enlarged the plastic deformation zone of the back face, the polyethylene core sandwich structure was a little less effective than the monolithic Al alloy target at resisting hemispherical-nosed projectile impact.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.