Abstract

Scaling up the chemical vapor deposition (CVD) of monolayer transition metal dichalcogenides (TMDCs) is in high demand for practical applications. However, for CVD-grown TMDCs on a large scale, there are many existing factors that result in their poor uniformity. In particular, gas flow, which usually leads to inhomogeneous distributions of precursor concentrations, has yet to be well controlled. In this work, the growth of uniform monolayer MoS2 on a large scale by the delicate control of gas flows of precursors, which is realized by vertically aligning a well-designed perforated carbon nanotube (p-CNT) film face-to-face with the substrate in a horizontal tube furnace, is achieved. The p-CNT film releases gaseous Mo precursor from the solid part and allows S vapor to pass through the hollow part, resulting in uniform distributions of both gas flow rate and precursor concentrations near the substrate. Simulation results further verify that the well-designed p-CNT film guarantees a steady gas flow and a uniform spatial distribution of precursors. Consequently, the as-grown monolayer MoS2 shows quite good uniformity in geometry, density, structure, and electrical properties. This work provides a universal pathway for the synthesis of large-scale uniform monolayer TMDCs, and will advance their applications in high-performance electronic devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call