Abstract

Continuous, on-site monitoring of personal exposure levels to occupational chemical hazards in ambient air is a long-standing analytical challenge. Such monitoring is required to institute appropriate health measures but is often limited by the time delays associated with batch air sampling and the need for off-site instrumental analyses. In this work, we report on the first attempt to use the catalytic properties of perfluorosulfonic acid (PSA) membranes to obtain a rapid, selective, and highly sensitive optical response to trimellitic anhydride (TMA) in the gas phase for portable sensor device application. TMA is used as starting material for various organic products and is recognized to be an extremely toxic agent by the National Institute for Occupational Safety and Health (NIOSH). Resorcinol dye is shown to become immobilized in PSA membranes and diffusionally constrain an orange brown product that results from acid-catalyzed reaction with more rapidly diffusing TMA molecules. FTIR, UV/vis, reaction selectivity to TMA versus trimellitic acid (TMLA), and homogeneous synthesis are used to infer 5,7- dihydroxyanthraquinone-2-carboxylic acid as the acylation product of the reaction. The color response has a sensitivity to at least 3 parts per billion (ppb) TMA exposure and, in addition to TMLA, excludes maleic anhydride (MA) and phthalic anhydride (PA). Solvent extraction at long times is used to determine that the resorcinol extinction coefficient in 1100 EW PSA membrane has a value of 1210 m(2)/g at 271.01 nm versus a value of 2010 m(2)/g at 275.22 nm in 50 vol% ethanol/water solution. The hypsochromic wavelength shift and reduced extinction coefficient suggest that the polar perfluorosulfonic acid groups in the membrane provide the thermodynamic driving force for diffusion and immobilization. At a resorcinol concentration of 0.376 g/L in the membrane, a partition coefficient of nearly unity is obtained between the membrane and solution concentrations and a maximum conversion rate of one ambient TMA molecule for every two membrane-immobilized resorcinol molecules is observed in 15 min.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call