Abstract

Eliminating the critical knowledge gaps of perfluorooctanoic acid (PFOA) effects in planta is the imperative target to accomplish accurate and meaningful exposure-risk assessment in the environment. Here, we investigated the effect of environmentally relevant concentrations of PFOA on the oxidative stress and metabolic regulation in lettuce (Lactuca sativa) root. Under the exposure to 5 and 50 μg/L PFOA for 10 days, 137.5 and 1275.0 ng PFOA/g dry weight were accumulated to roots, respectively. H2O2, the dominant reactive oxygen species, was slightly over-generated by 4.7%–9.5%. No signs of oxidative damage, such as lipid peroxidation, cell membrane integrity and soluble protein content, were observed. To deal with PFOA stress, the activities of ascorbate peroxidase and peroxidase and the contents of glutathione were dose-dependently up-regulated. Partial least-squares discriminant analysis revealed metabolite profiles were significantly altered by PFOA, involving the primary metabolism (e.g., sucrose, glucose, fructose-6-phosphate, methionine, γ-aminobutyric acid), and the biosynthesis of (poly)phenol (e.g., shikimate, naringenin) and alkaloid (e.g., geranyl diphosphate, dopamine). Our findings showed that environmentally relevant concentrations of PFOA significantly perturbed metabolisms in plant roots albeit no remarkable cell damage was induced.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call