Abstract
Perfluorooctanoic acid (PFOA) is a widespread environmental contaminant that induces developmental cardiotoxicity. It is detectable in late stage chicken embryos and hatchling chickens. To investigate mechanism(s) of cardiotoxicity, primary cultures of cardiomyocytes were prepared from 10-day-old chicken embryos that were (A) pre-exposed to vehicle or 2 mg of PFOA/kg of egg weight in ovo or (B) incubated with PFOA in vitro at concentrations ranging from 0 to 100 µg/mL in medium for 1 or 36 h. When viability was assessed, survival of cardiomyocytes prepared from pre-exposed embryos did not differ from vehicle controls, even under conditions of serum starvation designed to challenge the cells. However, 1 h of exposure to 100 µg/mL of PFOA in vitro and 36 h of exposure to 75 and 100 µg/mL PFOA in vitro decreased viability. When contractility was evaluated, cardiomyocytes cultured from pre-exposed embryos exhibited decreases in time to maximum departure velocity and cell length at peak contraction, whereas cardiomyocytes exposed in vitro exhibited a reduction in the 50% relaxation time at a concentration of 1 µg/mL relative to vehicle controls. Morphological assessment revealed decreased cardiomyocytes axial length following in ovo PFOA exposure and 24 h in vitro PFOA 50 µg/mL exposure. Reactive oxygen species (ROS) generation, which was evaluated only in cardiomyocytes exposed to PFOA in vitro, was significantly elevated following incubation with 50 µg/mL of PFOA for 1 h. These data indicate that while in vitro exposure to relatively high concentrations of PFOA can induce cytotoxicity and ROS, developmental cardiotoxicity observed in ovo is not likely mediated via PFOA-induced overt cytotoxicity, but likely by altering early cardiac morphologic and function processes. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1580-1590, 2016.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.