Abstract

Perfluorooctanesulfonate (PFOS) is a persistent environmental agent. We examined whether PFOS exposure during pregnancy alters blood pressure in male and female offspring, and if this is related to sex-specific changes in vascular mechanisms. PFOS was administered through drinking water (50 μg/mL) to pregnant Sprague-Dawley rats from gestational day 4 until delivery. PFOS-exposure decreased maternal weight gain but did not significantly alter feed and water intake in dams. The male and female pups born to PFOS mothers were smaller in weight by 29 % and 27 %, respectively. The male PFOS offspring remained smaller through adulthood, but the female PFOS offspring exhibited catch-up growth. The blood pressure at 12 and 16 weeks of age was elevated at similar magnitude in PFOS males and females than controls. Mesenteric arterial relaxation to acetylcholine was reduced in both PFOS males and females, but the extent of decrease was greater in females. Relaxation to sodium-nitroprusside was reduced in PFOS females but unaffected in PFOS males. Vascular eNOS expression was not changed, but phospho(Ser1177)-eNOS was decreased in PFOS males. In PFOS females, both total eNOS and phospho(Ser1177)-eNOS expression were reduced. In conclusion, PFOS exposure during prenatal life (1) caused low birth weight followed by catch-up growth only in females (2) lead to hypertension of similar magnitude in both males and females; (2) decreased endothelium-dependent vascular relaxation in males but suppressed both endothelium-dependent and -independent relaxation in females. The endothelial dysfunction is associated with reduced activity of eNOS in males and decreased expression and activity of eNOS in females.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.