Abstract

Perfluorooctane sulfonate (PFOS) is a widespread and persistent chemical in the environment. Reports show that PFOS is a potential endocrine disruptor; however, the possible effects of PFOS on placental endocrine function are unclear. This study aimed to investigate the endocrine-disrupting effects of PFOS on the placenta in pregnant rats and its potential mechanism. Pregnant rats from gestational days 4–20 were exposed to 0, 10, and 50 μg/mL PFOS through drinking water followed by analysis of various biochemical parameters. PFOS dose-dependently decreased fetal and placental weight in both sexes, with a specific decrease in weight of labyrinth but not junctional layer. Plasma progesterone (↑166%), aldosterone (↑201%), corticosterone (↑205%), testosterone (↑45%), luteinizing hormone (↑49%) levels were significantly increased, while estradiol (↓27%), prolactin (↓28%) and hCG (↓62%) levels were reduced in groups exposed to higher doses of PFOS. Real-time quantitative reverse transcriptase-polymerase chain reaction analysis revealed a significant increase in mRNA levels of placental steroid biosynthesis enzymes, including Cyp11A1 and 3β-HSD1 in male placenta and StAR, Cyp11A1, 17β-HSD1 and 17β-HSD3 in female placenta of PFOS dams. Cyp19A1 expression in ovaries was significantly decreased in PFOS dams. mRNA levels for placental steroid metabolism enzyme UGT1A1 increased in male but not in female placenta of PFOS dams. These results suggest that the placenta is a target tissue of PFOS and PFOS-induced dysregulation in steroid hormone production might be related to the altered expression of hormone biosynthesis and metabolism enzyme genes in the placenta. This hormone disruption might affect maternal health and fetal growth.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.