Abstract

A multiblock copolymer containing a highly sulfonated poly(phenylene sulfide sulfone) (sPPSS) hydrophilic oligomer and a partially fluorinated perfluorocyclobutyl (PFCB)-containing hydrophobic oligomer was synthesized. The sharp contrast between the hydrophilic and hydrophobic moieties induced a well-developed phase separation, which was observed in the transmission electron microscopy (TEM) images within the polymer electrolyte membrane (PEM). The increased chain mobility from the flexible ether and PFCB groups afforded facile thermal annealing of the membrane. Thermal annealing induced polymer chain packing of the hydrophobic moieties, enhancing the hydrophilic/hydrophobic phase separation. The fabricated membranes exhibited higher proton conductivity compared with those of conventional hydrocarbon PEM possessing a random copolymer architecture, while their dimensional swelling was suppressed. Additionally, under low humidification (a relative humidity (RH) of 50%), the sulfonated–fluorinated membrane achieved a high proton conductivity of up to 41.9 mScm−1. A high adhesion strength of 32.7 mNcm−1 was also observed, indicating strong interfacial compatibility in the membrane electrode assembly (MEA) due to its structural affinity for the contacting perfluorosulfonated binder. The enhanced hydrophilic/hydrophobic phase separations facilitated fuel cell performances of 1.13 and 0.61 Acm−2 at 0.6 V and 65 °C under 100% and 50% RH conditions, respectively, in addition to achieving stable chemical and physical durabilities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.