Abstract
The cyclopolymerization of aromatic trifluorovinyl ether (TFVE) monomers offers a versatile route to a unique class of linear and network fluoropolymers containing the perfluorocyclobutyl (PFCB) linkage. Polymerization proceeds by a thermal — radical mediated — step-growth mechanism and provides well-defined polymers containing known fluoroolefin end groups. PFCB polymers combine the engineering thermoplastic nature of polyaryl ethers with fluorocarbon segments and exhibit excellent processability, optical transparency, high temperature performance, and low dielectric constants. An intermediate strategy utilizing Grignard and aryllithium reagents has been developed which offers access to a wide variety of hybrid materials amenable to coatings applications. Liquid crystalline examples have recently been achieved in addition to tailoring optical properties by co-polymerization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.