Abstract

The perfluoroalkylated substances (PFAS) perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) are used for the fabrication of water- and dirt-repellent surfaces. The use of PFOS and PFOA was restricted due to their reprotoxic properties and their environmental persistence. Therefore, industry switches to alternative PFAS, however, in contrast to PFOA and PFOS only few toxicological data are available for their substitutes.The molecular mechanism(s) underlying reproductive toxicity of PFOA and PFOS are largely unknown. Here, the endocrine properties of PFOA, PFOS, and of six substitutes including perfluorohexanesulfonic acid (PFHxS), perfluorobutanesulfonic acid (PFBS), perfluorohexanoic acid (PFHxA), perfluorobutanoic acid (PFBA), ammonium perfluoro(2-methyl-3-oxahexanoate) (PMOH), and 3H-perfluoro-3-[(3-methoxypropoxy) propanoic acid] (PMPP) were examined in vitro by using human cell lines such as MCF-7, H295R, LNCaP and MDA-kb2. PFOA, PFOS and PMOH enhanced 17β-estradiol-stimulated estrogen receptor β activity, and PFOS, PMOH, PFHxA and PFBA enhanced dihydrotestosterone-stimulated androgen receptor activity. In the H295R steroidogenesis assay, PFOA and PFOS slightly enhanced estrone secretion, and progesterone secretion was marginally increased by PFOA. All these effects were only observed at concentrations above 10 μM, and none of the PFAS displayed any effect on any of the molecular endocrine endpoints at concentrations of 10 μM or below. Thus, as the blood serum concentrations of the different PFAS in the general Western population are in the range of 10 nM or below, the results suggest that PFAS might not exert endocrine effects in humans at exposure-relevant concentrations according to the molecular endpoints examined in this study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.