Abstract

Climate change and pollution are increasingly important stress factors for life on Earth. Dispersal of poly- and perfluoroalkyl substances (PFAS) are causing worldwide contamination of soils and water tables. PFAS are partially hydrophobic and can easily bioaccumulate in living organisms, causing metabolic alterations. Different plant species can uptake large amounts of PFAS, but little is known about its consequences for the plant water relation and other physiological processes, especially in woody plants. In this study, we investigated the fractionation of PFAS bioaccumulation from roots to leaves and its effects on the conductive elements of willow plants. Additionally, we focused on the stomal opening and the phytohormonal content. For this purpose, willow cuttings were exposed to a mixture of 11 PFAS compounds and the uptake was evaluated by LC-MS/MS. Stomatal conductance was measured and the xylem vulnerability to air embolism was tested and further, the abscisic acid and salicylic acid contents were quantified using LC-MS/MS. PFAS accumulated from roots to leaves based on their chemical structure. PFAS-exposed plants showed reduced stomatal conductance, while no differences were observed in abscisic acid and salicylic acid contents. Interestingly, PFAS exposure caused a higher vulnerability to drought-induced xylem embolism in treated plants. Our study provides novel information about the PFAS effects on the xylem hydraulics, suggesting that the plant water balance may be affected by PFAS exposure. In this perspective, drought events may be more stressful for PFAS-exposed plants, thus reducing their potential for phytoremediation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.