Abstract

Since its introduction the perfectly matched layer (PML) has proven to be an accurate and robust method for domain truncation in computational electromagnetics. However, the mathematical analysis of PMLs has been limited to special cases. In particular, the basic question of whether or not a stable PML exists for arbitrary wave propagation problems remains unanswered. In this work we develop general tools for constructing PMLs for first order hyperbolic systems. We present a model with many parameters, which is applicable to all hyperbolic systems and which we prove is well‐posed and perfectly matched. We also introduce an automatic method for analyzing the stability of the model and establishing energy inequalities. We illustrate our techniques with applications to Maxwell’s equations, the linearized Euler equations, and arbitrary $2 \times 2$ systems in (2+1) dimensions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.