Abstract

A perfectly matched layer (PML) medium with complex frequency shifted (CFS) constitutive parameters is introduced for the three-dimensional alternating direction implicit (ADI) formulation of the finite-difference time-domain (FDTD) method. The absorbing boundary is implemented using the convolutional PML (CPML) approach. It is demonstrated that the resulting ADI-CPML scheme is unconditionally stable. The effectiveness of the absorbing medium as a function of the time step is also demonstrated. The proposed method has the advantage that it allows the application of the ADI method to low-frequency analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.