Abstract

``Perfect zero-knowledge arguments'' is a cryptographic primitive which allows one polynomial-time player to convince another polynomial-time player of the validity of an NP statement, without revealing any additional information (in the information-theoretic sense). Here the security achieved is on-line: in order to cheat and validate a false theorem, the prover must break a cryptographic assumption on-line during the conversation, while the verifier cannot find (ever) any information unconditionally. Despite their practical and theoretical importance, it was only known how to implement zero-knowledge arguments based on specific algebraic assumptions. In this paper we show a general construction which can be based on any one-way permutation. The result is obtained by a construction of an information-theoretic secure bit-commitment protocol. The protocol is efficient (both parties are polynomial time) and can be based on any one-way permutation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.