Abstract

In this paper, a novel perfect tracking control method based on multirate feedforward control is proposed. The advantages of the proposed method are that: (1) the proposed multirate feedforward controller eliminates the notorious unstable zero problem in designing the discrete-time inverse system; (2) the states of the plant match the desired trajectories at every sampling point of reference input; and (3) the proposed controller is completely independent of the feedback characteristics. Thus, highly robust performance is assured by the robust feedback controller. Moreover, by generalizing the relationship between the sampling period of plant output and the control period of plant input, the proposed method can be applied to various systems with hardware restrictions of these periods, which leads to higher performance. Next, it is shown that the structure of the proposed perfect tracking controller is very simple and clear. Illustrative examples of position control using a DC servomotor are presented, and simulations and experiments demonstrate the advantages of this approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call