Abstract
Perfect state transfer between two marked vertices of a graph by means of discrete-time quantum walk is analyzed. We consider the quantum walk search algorithm with two marked vertices, sender and receiver. It is shown by explicit calculation that for the coined quantum walks on star graph and complete graph with self-loops perfect state transfer between the sender and receiver vertex is achieved for arbitrary number of vertices $N$ in $O(\sqrt{N})$ steps of the walk. Finally, we show that Szegedy's walk with queries on complete graph allows for state transfer with unit fidelity in the limit of large $N$.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.