Abstract
In this paper we show the existence of perfect sequences, of unbounded lengths, over the basic quaternions {1,−1,i,−i,j,−j,k,−k}. Perfect sequences over the quaternion algebra were first introduced in 2009. One year later, a perfect sequence of length 5,354,228,880, over a quaternion alphabet with 24 elements, was shown. At this point two main questions were stated: Are there perfect sequences of unbounded lengths over the quaternion algebra? If so, is it possible to restrict the alphabet size to a small one? We answer these two questions by proving that any Lee sequence can always be converted into a sequence over the basic quaternions, which is an alphabet with 8 elements, and then by using the existence of Lee sequences of unbounded lengths to prove the existence of perfect sequences of unbounded lengths over the basic quaternions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.