Abstract

Perfect inline squeezers are both spectrally pure and have identical input and output temporal modes, allowing one to squeeze an arbitrary input quantum state in the sole input mode on which the device acts, while the quantum states of any other modes are unaffected. We study theoretically how to obtain a perfect pulsed inline squeezer in twin-beam systems by considering three commonly used configurations: unpoled single pass, poled single pass, and poled double pass. By obtaining analytical relations between the input and output temporal modes from the Bloch–Messiah decomposition of the discretized Heisenberg-picture propagator, we find that a double-pass structure produces a perfect pulsed inline squeezer when operated in a frequency degenerate, symmetric group-velocity matched type-II configuration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.