Abstract
It is shown that there are finitely many perfect powers in an elliptic divisibility sequence whose first term is divisible by 2 or 3. For Mordell curves the same conclusion is shown to hold if the first term is greater than 1. Examples of Mordell curves and families of congruent number curves are given with corresponding elliptic divisibility sequences having no perfect power terms. The proofs combine primitive divisor results with modular methods for Diophantine equations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.