Abstract

It has been shown that perfect photon absorption can occur in the linear excitation regime of cavity quantum electrodynamics (CQED), in which photons from two identical light fields coupled into two ends of the cavity are completely absorbed and result in excitation of the polariton state of the CQED system. The output light from the cavity is totally suppressed by the destructive interference and the polariton state can only decay incoherently back to the ground state. Here we analyze the perfect photon absorption and onset of optical bistability in the nonlinear regime of the CQED and show that the perfect photon absorption persists in the nonlinear regime of the CQED below the threshold of the optical bistability. Therefore the perfect photon absorption is a phenomenon that can be observed in both linear and nonlinear regimes of CQED. Furthermore, our study reveals for the first time that the optical bistability is influenced by the input-light interference and can be manipulated by varying the relative phase of the two input fields.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call