Abstract

In this paper, we present a polarization-insensitive metamaterial (MM) absorber which is composed of the dielectric substrate sandwiched with split-ring-cross resonator (SRCR) and continuous metal film. The MM absorber is not limited by the quarter-wavelength thickness and can achieve near-unity absorbance by properly assembling the sandwiched structure. Microwave experiments demonstrate the maximum absorptivity to be about 99% around 10.91 GHz for incident wave with different polarizations. The surface currents distributions of the resonance structure are discussed to look into the resonance mechanism. Importantly, our absorber is only 0.4 mm thick, and numerical simulations confirm that the MM absorber could achieve very high absorptivity at wide angles of incidence for both transverse electric (TE) wave and transverse magnetic (TM) wave. The sandwiched structure is also suitable for designing of a THz and even higher frequency MM absorber, and simulations demonstrate the absorption of 99% at 1.105 THz.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call